Fundamentals of Electronics I (ECE-UY 3114)

This course focuses on circuit models and amplifier frequency response, op-amps, difference amplifier, voltage-to-current converter, slew rate, full-power bandwidth, common-mode rejection, frequency response of closed-loop amplifier, gain-bandwidth product rule, diodes, limiters, clamps and semiconductor physics. Other topics include Bipolar Junction Transistors; small-signal models, cut-off, saturation and active regions; common emitter, common base and emitter-follower amplifier configurations; Field-Effect Transistors (MOSFET and JFET); biasing; small-signal models; common-source and common gate amplifiers; and integrated circuit MOS amplifiers. The alternate-week laboratory experiments on OP-AMP applications, BJT biasing, large signal operation and FET characteristics. The course studies design and analysis of operational amplifiers; small-signal bipolar junction transistor and field-effect transistor amplifiers; diode circuits; differential pair amplifiers and semiconductor device- physics fundamentals. | Prerequisites for Brooklyn Engineering Students: EE-UY 2024 or EE-UY 2004 (C- or better) and PH-UY 2023 | Prerequisites for Abu Dhabi Students: ENGR-AD 214 and SCIEN-AD 110. | Prerequisites for Shanghai Students: EENG-SHU 251 (C- or better) and PHYS-SHU 93 or CCSC-SHU 51. ABET competencies a, b, c, e, k.

Elect. Engineering – ECE UGRD (Undergraduate)
4 credits – 14 Weeks

Sections (Fall 2025)


ECE-UY 3114-000 (3916)


ECE-UY 3114-000 (3917)


ECE-UY 3114-000 (3918)


ECE-UY 3114-000 (3915)


ECE-UY 3114-000 (3919)
09/02/2025 – 12/11/2025 Mon,Wed
4:00 PM – 5:00 PM (Late afternoon)
at Brooklyn Campus
Instructed by Das, Nirod

Electromagnetic Waves (ECE-UY 3604)

Electromagnetic wave propagation in free space and in dielectrics, starting from a consideration of distributed inductance and capacitance on transmission lines. Electromagnetic plane waves are obtained as a special case. Reflection and transmission at discontinuities are discussed for pulsed sources, while impedance transformation and matching are presented for harmonic time dependence. Snell’s law and the reflection and transmission coefficients at dielectric interfaces are derived for obliquely propagation plane waves. Guiding of waves by dielectrics and by metal waveguides is demonstrated. Alternate-week laboratory. Objectives: Establish foundations of electromagnetic wave theory applicable to antennas, transmissions lines and materials; increase appreciation for properties of materials through physical experiments. | Prerequisites for Brooklyn Engineering Students: EE-UY 2024 or EE-UY 2004 (C- or better). | Prerequisites for Abu Dhabi Students: ENGR-AD 214. | Prerequisites for Shanghai Students: EENG-SHU 251 (C- or better). ABET competencies: a, b, c, e, k.

Elect. Engineering – ECE UGRD (Undergraduate)
4 credits – 15 Weeks

Sections (Spring 2025)


ECE-UY 3604-000 (17417)
01/21/2025 – 05/06/2025 Tue
8:00 AM – 10:00 AM (Morning)
at Brooklyn Campus
Instructed by


ECE-UY 3604-000 (8784)
01/21/2025 – 05/06/2025 Thu
2:00 PM – 4:00 PM (Early afternoon)
at Brooklyn Campus
Instructed by


ECE-UY 3604-000 (17418)
01/21/2025 – 05/06/2025 Tue
2:00 PM – 4:00 PM (Early afternoon)
at Brooklyn Campus
Instructed by


ECE-UY 3604-000 (17419)
01/21/2025 – 05/06/2025 Mon,Wed
12:00 AM – 1:00 PM (Early afternoon)
at Brooklyn Campus
Instructed by Das, Nirod