The course introduces the principles of dynamic system modeling, analysis, and feedback control design with extensive, hands-on computer simulation. Modeling and analysis of dynamic systems. Description of interconnected systems via transfer functions and block/signal-flow diagrams. System response characterization as transient and steady-state responses and error considerations. Stability of dynamical systems: Routh-Hurwitz criterion. Controller design using root-locus and Bode-diagrams (frequency domain). Introduction to modern state-space controller designs. Computer-aided feedback control design for mechanical, aerospace, robotic, thermo-fluid, and other electrical systems.
The course focuses on theory of measurement systems, selected electrical circuits and components for measurement, including passive and active filtering for signal conditioning, dynamic measurement system response characteristics, analog signal processing, analog to digital conversion, data acquisition, sensors, actuators and actuator characteristics. The laboratory involves topics related to the design of measurement systems pertaining to all disciplines of engineering such as data acquisition, operational amplifiers, sensors for the measurement of force, vibration, temperature etc. In addition, actuators will also be introduced, including electric motors and pneumatics. Design of virtual instrumentation systems using LabVIEW is also included.
A site for IMA NY Students to find equivalent courses outside of IMA NY
For most students joining IMA in Fall 2022 and beyond, our new program structure affects the categorization of courses on this site.
Classes listed in the "IMA Major Electives" categories refer to the old IMA program structure. If you're under the new IMA program structure, these courses count as general IMA Electives.
You can still search the Interchange for most of your courses. You can find "IMA Major Distribution" courses listed here: